SVD and PCA

SVD is intimately related to eigendecomposition

AAT=UΣΣTUT=Udiag(σ12,,σn2)UTATA=VTΣTΣV=Vdiag(σ12,,σn2)

convention: σr=0 for min{n,m}<rmax{n,m}

SVD can be applied to the data matrix to identify the principal eigenvectors of the covariance matrix (PCA)