Eckart Young Theorem

By pruning the singular values below σk in the SVD representation, we get an optimal rank k approximation of a matrix

Formal definition:

Given ARn×m with SVD A=UΣVT. Then for all 1kminn,m:

Ak:=Udiag(σ1,,σk)VTargmin{||AB||F:rank(B)k}

Corollary

The squared error of low rank approximations can be expressed as:

||AAk||F2=i=k+1rank(A)σi2

Proof:

AAk=Udiag(0,,0,,σk+1,,σmin{n,m})VT