Expectation Maximization Algorithm

Definition

E-Step

L=z=1kqz[lnpz+lnπzlnqz]λ(zqz1)

λ is introduced to keep q normalized.
Deriving the first order optimality condition:

lnpz+lnπzlnqz=!λ+1qz=!eλ+1πzpzqz=!πzpzζπζpζ

M-Step

Maximize lower bound w.r.t. the parameters of p with the current guess of q

πz=1st=1sqtzθzmaxt=1slnp(xt;θz)